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Summary. Probability Collectives (PC) provides the information-theoretic exten-
sion of conventional full-rationality game theory to bounded rational games. Here
an explicit solution to the equations giving the bounded rationality equilibrium of
a game is presented. Then PC is used to investigate games in which the players use
bounded rational best-response strategies. Next it is shown that in the continuum-
time limit, bounded rational best response games result in a variant of the replicator
dynamics of evolutionary game theory. It is then shown that for team (shared-payoff)
games, this variant of replicator dynamics is identical to Newton-Raphson iterative
optimization of the shared utility function.

1 Introduction

Recent work has used information theory [9, 12] to provide a principled ex-
tension of noncooperate conventional game theory to accommodate bounded
rationality [25, 27]. Intuitively, this extension starts with the observation that
in the real world ascertaining a game’s equilibrium is an exercise in statistical
inference: one is given (or assumes) partial information about the behavior of
the players, and from that infers (!) what the joint mixed strategy is likely to
be. There are many ways to do such statistical inference. The one investigated
in [27] is based on information theory’s version of Occam’s razor: Predict the
joint mixed strategy that has as little extra information as possible beyond
the provided partial knowledge while being consistent with that knowledge.
This version of Occam’s razor is known as the Maximum entropy (Maxent)
principle [9, 12]. It tells us that the mixed strategy of a game’s equilibrium,
q(x ∈ X) =

∏
i qi(xi), is the solution to a coupled set of Lagrangian functions

that are specified by the game structure and the provided partial knowledge.
Sec. 2 reviews how information theory can be used to derive bounded

rational noncooperative game theory. Some simple examples of the bounded
rational equilibrium solutions of games are then presented. Sec. 3 analyzes
scenarios in which the players use bounded rational versions of best response
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strategies. Particular attention is paid to team games, in which the players
share the same utility function. The analysis for this case provide insight into
how to optimize the sequence of moves by the players, as far as their shared
utility is concerned. This can be viewed as a formal way to optimize the
organization chart of a corporation.

Best response strategies, even bounded rational ones, are poor models of
real-world computational players that use Reinforcement Learning (RL) [20].
Sec. 4 considers iterated games in which players use a (bounded rational)
variant of best response, a variant that is more realistic for computational
players, and arguably for human players as well. In this variant the conditional
expected utilities used by player i to update her strategy, expected payoff given
move xi, is a decaying average of recent conditional expected utilities. This
decay biases the player to dampen large and sudden changes in her strategy.
This variant is then explored for the case of team games. The continuum
limit of the dynamics of such games is shown to be variant of the replicator
dynamics. It is shown such continuum-limit bounded rational best response
is identical to Newton-Raphson iterative optimization of the shared utility
function of such games.

The formalism presented in this paper is a special case of the field of
Probability Collectives (PC), a case in which the joint distribution over the
variables of interest is a product distribution. This special case is known as
Product Distribution (PD) theory [25, 27, 29, 28, 26, 7]. PC has many appli-
cations beyond those considered in this paper, e.g., distributed optimization
and control [16, 15, 2, 29]. Finally, see [16] for relations to other work in game
theory, optimization, statistical physics, and reinforcement learning.

2 Bounded Rational Noncooperative Game Theory

In this section we motivate PD theory as the information-theoretic formula-
tion of bounded rational game theory. We use the integral sign (

∫
) with the

associated measure implicit, i.e., it indicates sums if appropriate, Lebesgue
integrals over R

n if appropriate, etc. In addition, the subscript (i) is used to
indicate all index values other than i. Finally, we use P to indicate the set of
all probability distributions over a vector space, and Q to indicate the sub-
set of P consisting of all product distributions (i.e., the associated Cartesian
product of unit simplices).

In noncooperative game theory one has a set of N players. Each player i
has its own set of allowed pure strategies. A mixed strategy is a distri-
bution qi(xi) over player i’s possible pure strategies. Each player i also has a
private utility function gi that maps the pure strategies adopted by all N of
the players into the real numbers. So given mixed strategies of all the players,
the expected utility of player i is E(gi) =

∫
dx

∏
j qj(xj)gi(x).

In a Nash equilibrium every player adopts the mixed strategy that maxi-
mizes its expected utility, given the mixed strategies of the other players. More
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formally, ∀i, qi = argmaxq′

i

∫
dx q′i

∏
j 6=i qj(xj) gi(x). Perhaps the major ob-

jection that has been raised to the Nash equilibrium concept is its assumption
of full rationality [10, 6, 18, 4]. This is the assumption that every player i
can both calculate what the strategies qj 6=i will be and then calculate its as-
sociated optimal distribution. In other words, it is the assumption that every
player will calculate the entire joint distribution q(x) =

∏
j qj(xj).

In the real world, this assumption of full rationality almost never holds,
whether the players are humans, animals, or computational agents [5, 17,
10, 3, 8, 1, 22, 14]. This is due to the cost of computation of that optimal
distribution, if nothing else. This real-world bounded rationality is a major
impediment to applying conventional game theory in the real world.

2.1 Review of the minimum information principle

Shannon was the first person to realize that based on any of several separate
sets of very simple desiderata, there is a unique real-valued quantification of
the amount of syntactic information in a distribution P (y). He showed that
this amount of information is the negative of the Shannon entropy of that

distribution, S(P ) = −
∫

dy P (y)ln[P (y)
µ(y) ]. So for example, the distribution

with minimal information is the one that doesn’t distinguish at all between
the various y, i.e., the uniform distribution. Conversely, the most informative
distribution is the one that specifies a single possible y. Note that for a product
distribution, entropy is additive, i.e., S(

∏
i qi(yi)) =

∑
i S(qi).

Say we given some incomplete prior knowledge about a distribution P (y).
How should one estimate P (y) based on that prior knowledge? Shannon’s re-
sult tells us how to do that in the most conservative way: have your estimate
of P (y) contain the minimal amount of extra information beyond that already
contained in the prior knowledge about P (y). Intuitively, this can be viewed as
a version of Occam’s razor: introduce as little extra information beyond that
you are provided in your inferring of P . This minimum information approach
is called the maxent principle. It has proven extremely powerful in domains
ranging from signal processing to supervised learning [12]. In particular, it is
has been successfully used in many statistics applications, including econo-
metrics [13]. It has even provided what many consider the cleanest derivation
of the foundations of statistical physics [11].

2.2 Maxent Lagrangians

Much of the work on equilibrium concepts in game theory adopts the per-
spective of an external observer of a game. We are told something concerning
the game, e.g., its cost functions, information sets, etc., and from that wish to
predict what joint strategy will be followed by real-world players of the game.
Say that in addition to such information, we are told the expected utilities
of the players. What is our best estimate of the distribution q that generated
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those expected cost values? By the maxent principle, it is the distribution
with maximal entropy, subject to those expectation values.

To formalize this, for simplicity assume a finite number of players and of
possible strategies for each player. To agree with the convention in fields other
than game theory (e.g., optimization, statistical physics, etc.), from now on
we implicitly flip the sign of each gi so that the associated player i wants to
minimize that function rather than maximize it. Intuitively, this flipped gi(x)
is the “cost” to player i when the joint-strategy is x.

With this convention, given prior knowledge that the expected utilities of
the players are given by the set of values {εi}, the maxent estimate of the
associated q is given by the minimizer of the Lagrangian

L (q) ,
∑

i

βi[Eq(gi)− εi]− S(q) (1)

=
∑

i

βi[

∫
dx

∏
j

qj(xj)gi(x)− εi]− S(q) (2)

where the subscript on the expectation value indicates that it evaluated un-
der distribution q. The {βi} are “inverse temperatures” implicitly set by the
constraints on the expected utilities.

Solving, we get the coupled equations

qi(xi) ∝ e
−Eq(i)

(G|xi) (3)

where the overall proportionality constant for each i is set by normalization,
and G ,

∑
i βigi

1. In Eq. 3 the probability of player i choosing pure strategy
xi depends on the effect of that choice on the utilities of the other players.
This reflects the fact that our prior knowledge concerns all the players equally.

If we wish to focus only on the behavior of player i, it is appropriate to
modify our prior knowledge. First consider the case of maximal prior knowl-
edge, in which we know the actual joint-strategy of the players, and therefore
all of their expected costs. For this case, trivially, the maxent principle says
we should “estimate” q as that joint-strategy (it being the q with maximal
entropy that is consistent with our prior knowledge). The same conclusion
holds if our prior knowledge also includes the expected cost of player i.

Modify this maximal set of prior knowledge by removing from it specifica-
tion of player i’s strategy. So our prior knowledge is the mixed strategies of all
players other than i, together with player i’s expected cost. We can incorpo-
rate prior knowledge of the other players’ mixed strategies directly, without
introducing Lagrange parameters. The resultant maxent Lagrangian is

Li(qi) , βi[εi − Eq(gi)]− Si(qi)

solved by a set of coupled Boltzmann distributions:

1The subscript q(i) on the expectation value indicates that it is evaluated ac-
cording the distribution

Q

j 6=i
qj .
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qi(xi) ∝ e
−βiEq(i)

(gi|xi). (4)

Following Nash, we can use Brouwer’s fixed point theorem to establish that
for any non-negative values {β}, there must exist at least one product distri-
bution given by the product of these Boltzmann distributions (one term in
the product for each i).

The first term in Li is minimized by a perfectly rational player. The second
term is minimized by a perfectly irrational player, i.e., by a perfectly uniform
mixed strategy qi. So βi in the maxent Lagrangian explicitly specifies the bal-
ance between the rational and irrational behavior of the player. In particular,
for β → ∞, by minimizing the Lagrangians we recover the Nash equilibria
of the game. More formally, in that limit the set of q that simultaneously
minimize the Lagrangians is the set of mixed strategy equilibria of the game,
together with the set of delta functions about the pure Nash equilibria of the
game. The same is true for Eq. 3.

Note also that independent of information-theoretic considerations, the
Boltzmann distribution is a reasonable (highly abstracted) model of human
behavior. Typically humans do some “exploration” as well as “exploitation”,
trying each move with probability that rises as the expected cost of the move
falls. This is captured in the Boltzmann distribution mixed strategy.

One can formalize the concept of the rationality of a player in a way that
applies to any distribution, not just a Boltzmann distribution. One does this
with a rationality operator which maps a q and a gi to a non-negative
real value measuring the rationality of player i in adopting strategy qi given
private cost function gi and strategies q(i) of the other players. For the solution
in Eq. 4 and private cost gi, the value of that operator is just βi [27].

Eq. 3 is just a special case of Eq. 4, where all player’s share the same
private cost function, G. (Such games are known as team games.) This
relationship reflects the fact that for this case, the difference between the
maxent Lagrangian and the one in Eq. 2 is independent of qi. Due to this
relationship, our guarantee of the existence of a solution to the set of maxent
Lagrangians implies the existence of a solution of the form Eq. 3. Typically
players will be closer to minimizing their expected cost than maximizing it.
For prior knowledge consistent with such a case, the βi are all non-negative.

For each player i define fi(x, qi(xi)) , βigi(x) + ln[qi(xi)]. Then we can
write the maxent Lagrangian for player i as

Li(q) =

∫
dx q(x)fi(x, qi(xi)). (5)

Now in a bounded rational game every player sets its strategy to minimize its
Lagrangian, given the strategies of the other players. In light of Eq. 5, this
means that we can interpret each player in a bounded rational game as being
perfectly rational for a cost function that incorporates its computational cost.
To do so we simply need to expand the domain of “cost functions” to include
(logarithms of) probability values as well as joint moves.
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2.3 Examples of bounded rational equilibria

It can be difficult to start with a set of cost functions and associated ratio-
nalities βi and then solve for the associated bounded rational equilibrium q.
Solving for q when prior knowledge consists of expected costs εi rather than
rationalities can be even more tedious. (In that situation the βi are not spec-
ified upfront but instead are Lagrange parameters that we must solve for.)
However there is an alternative approach to constructing examples of games
and their bounded rational equilibria that is quite simple. In this alternative
one starts with a particular mixed strategy q and then solves for a game for
which q is a bounded rational equilibrium, rather than the other way around.

To illustrate this, consider a 2-player single-stage game. Let each player
have 3 possible moves, indicated by the numerals 0, 1, and 2. Say the (bounded
rational) mixed strategy equilibrium is

q1(0) = 1/2, q1(1) = 1/4, q1(2) = 1/4;

q2(0) = 2/3, q2(1) = 1/4, q2(2) = 1/12 . (6)

Now we know that at the equilibrium, q1(x1) ∝ e−β1E(g1|x1), where β1

is player 1’s rationality, and g1 is her cost function (the negative of her cost
function). This means for example that

e−(β1[E(g1|x1=0)−E(g1|x1=1)]) =
q1(0)

q1(1)
= 2, i.e.,

β1[E(g1 | x1 = 0)− E(g1 | x1 = 1)] = −ln(2). (7)

A similar equation governs the remaining independent difference in expecta-
tion values for player 1. The analogous two equations for player 2 also hold.

Now define the vectors gi;j(.) , gi(xi = j, .). So for example g1;0 =
(g1(x1 = 0, x2 = 0), g1(x1 = 0, x2 = 1), g1(x1 = 0, x2 = 2)). Then we can
express our equations compactly as four dot product equalities:

β1(g1;0 − g1;1) · q2 = −ln(2) ; β1(g1;0 − g1;2) · q2 = −ln(2) ;

β2(g2;0 − g2;1) · q1 = −ln(8/3) ; β2(g2;0 − g2;2) · q1 = −ln(8) . (8)

We can absorb each βi into its associated gi; all that matters is their product.
We can now plug in for the vectors q1 and q2 from Eq. 6 and simply write

down a set of solutions for the four three-dimensional vectors gi,j . For these
{gi} the bounded ratinal equilibrium is given by the q of Eq. 6. If desired, we
can evaluate the associated expected values of the cost functions for the two
players; our q is the bounded ratinal equilibrium for those expected costs.

Note that the variables in the first pair of equalities in Eq. 8 are inde-
pendent of those in the second pair. In other words, whereas the Boltzmann
equations giving q for a specified set of gi are a set of coupled equations, the
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equations giving the gi for a specified q are not coupled. Note also that our
equations for the gi;j are (extremely) underconstrained. This illustrates how
compressive the mapping from the gi to the associated equilibrium q is. Bear
in mind though that that mapping is also multi-valued in general; in general
a single set of cost functions can have more than one equilibrium, just like it
can have more than one Nash equilibrium.

The generalization of this example to arbitrary numbers of players with
arbitrary move spaces is immediate. As before, indicate the moves of every
player by an associated set of integer numerals starting at 0. Recall that the
subscript (i) on a vector indicate all components but the i’th one. Also absorb
the rationalities βi into the associated gi.

Now specify q and the vectors gi(xi = 0, .) (one vector for each i) to be
anything whatsoever. Then for all players i, the only associated constraint on
the i’th cost function concerns certain projections of the vectors gi(xi > 0, .)
(one projection for each value xi > 0). Concretely, ∀i, xi > 0,

∫
dx′(i) gi(xi, x

′
(i))

∏
j 6=i

qj(x
′
j) = −ln(

qi(0)

qi(xi)
) +

∫
dx′(i)gi(0, x

′
(i))

∏
j 6=i

qj(x
′
j),

i.e., ∀i, xi > 0,gi(xi, .) · q(i) = −ln(
qi(0)

qi(xi)
) + gi(0, .) · q(i). (9)

All the terms on the right-hand side are specified, as well as the q(i) term on
the left-hand side. Any gi(xi, .) that obeys the associated equation has the
specified q as a bounded rational equilibrium.

See [27] for discussion of alternative interpretations of this information-
theoretic formulation of bounded rationality. That reference also discusses
kinds of prior knowledge that do not result in the Maxent Lagrangian, in
particular knowledge based on finite data sets (Bayesian inference). A scalar-
valued quantification of the rationality of a player is also presented there.

3 Bounded rational versions of best response

One crude way to try to find the q given by Eq. 4 would be an iterative pro-
cess akin to the best-response scheme of game theory [10]. Given any current
distribution q, in this scheme all agents i simultaneously replace their current
distributions. In this replacement each agent i replaces qi with the distribu-
tion given in Eq. 4 based on the current q(i). This scheme is the basis of the
use of Brouwer’s fixed point theorem to prove that a solution to Eq. 4 exists.
Accordingly, it is called parallel Brouwer updating. (This scheme goes by
many names in the literature, from Boltzmann learning in the RL community
to block relaxation in the optimization community.)

Sometimes conditional expected costs for each agent can be calculated ex-
plicitly at each iteration. More generally, they must be estimated. This can
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be done via Monte Carlo sampling, iterated across a block of time. During
that block the agents all repeatedly and jointly IID sample their (unchanging)
probability distributions to generate joint moves, and the associated cost val-
ues are recorded. These are then use to estimate all the conditional expected
costs, which then determine the parallel Brouwer update.

This is exactly what is done in RL-based schemes in which each agent
maintains a data-based estimate of its cost for each of its possible moves,
and then chooses its actual move stochastically, by sampling a Boltzmann
distribution of those estimates. (See [25] for ways to get accurate MC estimates
more efficiently than in this simple scheme, e.g., by exploiting the bias-variance
tradeoff of statistics.)

One alternative to parallel Brouwer updating is serial Brouwer updating,
where we only update one qi at a time. This is analogous to a Stackelberg
game, in that one agent makes its move and then the other(s) respond [4,
6]. In a team game, any serial Brouwer updating must reduce the common
Lagrangian, in contrast to the case with parallel Brouwer updating.

There are many versions of serial updating. In cyclic serial Brouwer up-
dating, one cycles through the i in order. In random serial Brouwer updating,
one cycles through them in a random fashion.

In greedy serial Brouwer updating, instead of cycling through all i, at each
iteration we choose what single player to update based on the associated drop
in the common Lagrangian. Those drops can be evaluated without calculating
the associated Boltzmann distributions. To see how, use Ni to indicate the
normalization constant of Eq. 4. Then define the Lagrangian gap at q for
player i as ln[Ni]+

∫
dxiqi(xi)Eq(i)

(gi | xi) +
∫

dxiqi(xi)ln[qi(xi)]. This is how

much L is reduced if only qi undergoes the Brouwer update 2.
Another obvious variant of these schemes is mixed serial/parallel Brouwer

updating, in which one subset of the players moves in synchrony, followed by
another subset, and so on. Such updating in a team game can be viewed as
a simple model of the organization chart of the players. For example, this is
the case when the players are a corporation, with G being a common cost
function based on the corporation’s performance.

Say we observe the functioning of such an organization over time, and view
those observations as Monte Carlo sampling of its behavior. Then we can use
those samples to statistically estimate how best to do serial/parallel Brouwer
updating, for the purpose of minimizing the shared cost function G. This can
be viewed as a way to optimize the organization chart coupling the players.

2Proof outline: Write the entropy after the update as a sum of non-i entropies
(which are unchanged by the update) plus i’s new entropy. Then expand i’s new
entropy. This gives the value of the new Lagrangian as -ln[Ni]. Then do the sub-
traction.
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4 Parallel Brouwer with data-aging is Nearest Newton

This section considers a variant of best-response that is more realistic (more
accurately models RL-based computational players that are actually used in
machine learning, and arguably more accurately models human players as
well). In this variant the expected cost used by each player to update her
strategy is a decaying average of recent expected utilities; this decay reflects
a conservative preference for dampening large changes in strategy.

Such a bias is used (implicitly or otherwise) in most multi-player RL algo-
rithms. For example, in the COIN framework each agent i collects a data set
of pairs of what value its private cost function has at timestep t together with
the move it made then. It then estimates its cost for move xi as a weighted
average of all the cost values in its data set for that move. The weights are
exponentially decaying functions of how long ago the associated observation
was made. This data-aging is crucial to reflect the non-stationarity of agent
i’s environment, i.e., that the other agents are changing their strategies with
time. Arguably, humans use similar modifications to best response. Indeed, in
idealized learning rules like ficticious play, such dampening is crucial.3

4.1 The dynamics of Brouwer updating

Consider a multi-stage game where at the end of iteration t, each player i
updates her distribution qi(., t) to

qi(xi, t) =
e−Φi(xi,t)∫
dx′ie

−Φi(x′

i
,t)

(10)

where Φi(xi, t) can implicitly depend on distributions for times t′ 6= t. This is
a generalization of parallel Brouwer updating, where the function being expo-
nentiated can be Q values (as in Q-learning [24]), single-instant reward values,
distorted versions of these (e.g., to incorporate data-aging), etc. This gener-
alization encompasses both uncountably many and countably many values of
t.

As an example, for single-instant rewards (i.e., conventional parallel Brouwer),
Φi(xi, t) is player i’s estimate of (βi times) her conditional expected cost for
taking move xi at time t− 1. If that estimate were exact, this would mean

3Brouwer updating with data-aging has minimal memory requirements on the
agents. Say agent i has just made a particular move, getting cost r, and that the
most recent previous time it made that time was T iterations ago. Then the new

estimated cost for that move, E′, is related to the previous one, E, by E′ = r+kT Ea

1+kT a
,

where k is a constant less than 1, and a is initially set to 1, while itself also being
updated according to a += kT . So agent i only needs to keep a running tally of
E, a, and T for each of its possible moves to use data-aging, rather than a tally of
all historical time-cost pairs.
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Φi(xi, t) = βE(gi | xi) = β

∫
dx(i)q(i)(x(i), t− 1)gi(xi, x(i)). (11)

As another example, for Q-learning, one player is Nature and for all t her
distribution is a delta function. In this case Φi(xi, t) is the Q-value for player
i taking action xi, when the state of Nature is as specified by the associated
delta function in q(., t− 1).

Note that there’s no Monte Carlo sampling being done here, as there is in
most real-world RL; this is a somewhat abstracted version of such RL. Alter-
natively, the analysis here becomes exact when Φi is evaluated closed form, or
(if Φi is an empirical expectation value) when there are enough samples in a
Monte Carlo block so that empirical averages effectively give us exact values
of expected quantities.

At this point we have to say something about how Φi evolves with time.
Consider the case where Φi is an “estimate” of the current value of some
function φi, formed by exponential aging of the previous (exactly known) φi

values. In our case, assuming there have been an infinite number of preced-
ing timesteps, at each of which we have the function φi, this is the same as
geometric data-aging:

Φi(xi, t) = αφi(xi, q(t− 1)) + (1− α)Φi(xi, t− 1). (12)

For example, in parallel Brouwer updating, φi(xi, t) = βE(gi | xi, q(i)(t)),
while Φi(xi, t) is a geometric average of the previous values {φi(xi, t

′ < t)}. 4

4.2 The continuum-time limit

To go to the continuum-time limit, let t be a real variable, and replace the
temporal delay value of 1 in Eq. 12 with δ, and replace α with αδ (we’ll
eventually take δ → 0). In the δ → 0 limit, assuming q is a continuous
function of t, Eq. 12 becomes

dΦi(xi, q)

dt
= α[φi(xi, q)− Φi(xi, q)]. (13)

where from now on, for clarity the t argument in Φi is no longer explicitly
written, whereas the q(t) variable is. In addition, since Eq. 10 already allows
for uncountable t, we can differentiate it with respect to t to get

dq(xi, t)

dt
= −qi(xi, t)[

dΦi(xi, t)

dt
−

∫
dx′iqi(x

′
i, t)

dΦi(x
′
i, t)

dt
]. (14)

If we knew the dynamics of φi, we could solve Eq. 13 via integrating factors,
in the usual way. Instead, here we’ll plug Eq. 13’s formula for dΦi

dt
into Eq. 14.

Then use Eq. 10 to write Φi(xi, q) = constant −ln(qi(xi)). The result is

4To see that Eq. 12 is exponential data-aging of φi, write the value of Φi(xi, t)
under such aging as a linear combination of two terms, one of which involves the
value Φi(xi, t− 1). Then set the aging exponent γ = -ln(1− α), to get Eq. 12.
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dqi(xi)

dt
= αqi(xi) [φi(xi, q) + ln(qi(xi))] −∫

dx′i αqi(x
′
i)[φi(x

′
i) + ln(qi(x

′
i))]. (15)

4.3 Relation with Nearest Newton descent and replicator

dynamics

As mentioned previously, there are many ways to find equilibria, and in par-
ticular many distributed algorithms for doing so. This is especially so in team
games, where finding such equilibria reduces to descending a single over-
arching Lagrangian. One natural idea for descent in such games is to use
the Newton-Raphson descent algorithm. However that algorithm cannot be
applied directly to search across q in a distributed fashion, due to the need
to invert matrices coupling the agents. As an alternative, one can consider
what new distribution p the Newton algorithm would step to if there was no
restriction that p be a product distribution. One can then ask what product
distribution is closest to p, according to Kullback-Leibler distance [9]. It turns
out that one can solve for that optimal product distribution. The associated
update rule is called the Nearest Newton algorithm [29].

It turns out that when one writes down the Nearest Newton update rule,
it says to replace each component qi(xi) with the exact quantity appearing
on the right-hand side of Eq. 15, where α is the stepsize of the update, and
φi(xi, t) = βE(G | xi, q(i)(t)), as in parallel Brouwer updating for a team
game 5. In other words, in team games, the continuum limit of having each
player using (bounded rational) best response is identical to the continuum
limit of the Newton-Raphson algorithm for descending the Lagrangian, with
the data-aging parameter α giving the stepsize.

Eq. 15 arises in other yet other contexts as well. In particular, say Φi is
conditional expected rewards (i.e., φi(xi, t − 1) = E(gi | q(., t − 1))). Then
the β → ∞ limit of Eq. 15 reduces to a simplified form of the replicator
dynamics equation of evolutionary game theory [21, 23]. (If the stepsize α is
an appropriately increasing function of E(G) other versions of that dynamics
arise.) This is because in that limit the ln term disappears, and the righthand
side of Eq. 15 involves only the difference between player i’s expected cost
and the average expected cost of all players. This 3-way connection suggests
using some of the techniques for solving replicator dynamics to expedite either
parallel Brouwer or Nearest Newton.

4.4 Convergence and equilibria

By Eq. 15, at equilibrium, for each i, qi(xi)[φi(xi, q)+ln(qi(xi))] must be inde-
pendent of i. One way this can occur is if it equals 0. However qi(xi) can never

5More generally, Nearest Newton uses this update rule with φi(xi, t) = βE(gi |
xi, q(i)(t)) where each gi(x) = G(x)−D(x(i)) for some function D. See [29].
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be 0, by Eq. 10. Therefore at this equilibriumqi(xi) ∝ e−φi(xi,q). Intuitively,
this is exactly what we want, according to Eq. 10 and our interpretation of
Φi(xi, q) as an estimate of φi(xi, q). Note also that this solution means that
φi(xi, q) = Φi(xi, q), so that (according to Eq. 13) Φi(xi, q) has also reached
an equilibrium.

When our equilibrium has qi(xi)[φi(xi, q) + ln(qi(xi))] = A 6= 0, we have

qi(xi) ∝ e−qi(xi)φi(xi,q). (16)

In light of Eq. 10, this means that Φi(xi, q) 6= φi(xi, q). So by Eq. 13, Φi(xi, q)
hasn’t reached an equilibrium in this case:

dΦi(xi, q)

dt
= αφi(xi, q)[1− qi(xi)]. (17)

If both qi(xi) and φi(xi, q) were frozen at this point, this solution for Φi(xi, q)
would not obey Eq. 12. So either qi(xi) and/or φi(xi, q) cannot be frozen. In
fact, if φi(xi, q) varies with time, then we know by Eq. 15 that qi(xi) varies as
well. So in either case qi(xi) must vary, i.e., this is not a proper equilibrium.

Although the dynamics has the desired fixed point, it may take a long time
to converge there. There are several ways to analyze that: One is to examine
the second derivatives (with respect to time) of the qi and/or the Φi. Another
is to examine the time-dependence of the residual error,

rge
i (xi, t) ,

e−Φi(xi,t)∫
dx′ie

−Φi(x′

i
,t)
−

e−φi(xi,t)∫
dx′ie

−φi(x′

i
,t)

. (18)

The next subsection includes a convergence analysis involving residual errors,
but for pedagogical purposes, it considers a different variant of Brouwer from
the ones considered so far.

4.5 Other variants of Brouwer updating

Data-aging can be viewed as moving only part-way from the current Φi to
what it should be (i.e. to φi). An alternative is to dispense with the Φi and φi

altogether, and instead step part-way from the current q to what it should be,
i.e., partially move to the (bounded rational) best response mixed strategy.
Formally, this means replacing Eq. 10 so that the update is not implicit, in
how Φi(xi, t) depends on the past value of q(t− 1) (Eq. 12), but explicit:

qi(xi, t) = qi(xi, t− 1) + α[hi(xi, q(i)(t− 1))− qi(xi, t− 1)] (19)

where hi(xi, q(i)(t)) is the Boltzmann distribution of what qi(xi, t) would be,
under ideal circumstances, and we implicitly have small stepsize α.

The only fixed point of this updating rule is where qi = hi ∀i. So just
like with continuum-limit parallel Brouwer, we have the correct equilibrium.
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To investigate how fast the update rule of Eq. 19 arrives at that equilibrium,
write its error at time t as the residual

rst
i (xi, t) = qi(xi, t)− hi(xi, q(i)(t))

= qi(xi, t− 1)[1− α] + αhi(xi, q(i)(t− 1)) − hi(xi, q(i)(t))

= qi(xi, t− 1)[1− α] + αhi(xi, q(i)(t− 1))

− hi[xi, q(i)(t− 1) + α[h(i)(q(t− 1))− q(i)(t− 1)]] (20)

where we have assumed that all all players other than i are updating them-
selves in the same that i does (i.e., via Eq. 19), and h(i)(q(t− 1)) means the
vector of the values of all hj 6=i(xj) evaluated for q(t− 1).

With obvious notation, rewrite Eq. 20 as

rst
i (xi, t) = qi(xi, t− 1)[1− α]

+ αhi(xi, q(i)(t− 1))

− hi[xi, q(i)(t− 1)− αr(i)(t− 1)]. (21)

Now use the fact that α is small to expand the last hi term on the righthand
side to first order in its second (vector-valued) argument, getting the result

rst
i (xi, t) ≈ ri(xi, t)[1− α] + α∇hi · r(i)(t− 1) (22)

where the gradient of hi is with respect to the vector components of its second
argument. Accordingly, if rst

i (xi) starts much larger than the other residuals,
it will be pushed down to their values. Conversely, if it starts much smaller
than them, it will rise.

There are other ways one can reduce a stochastic game to a deterministic
continuum-time process. In particular, this can be done in closed form for
ficticious play games and some simple variants of it [19, 10].

Acknowledgements: I would like to thank Stefan Bieniawski, Bill Macready,
George Judge, Chris Henze, and Ilan Kroo for helpful discussion.
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